Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cancer Res Commun ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619287

RESUMEN

The MUC1-C protein is aberrantly expressed in adenocarcinomas of epithelial barrier tissues and contributes to their progression. Less is known about involvement of MUC1-C in the pathogenesis of squamous cell carcinomas (SCCs). Here, we report that the MUC1 gene is upregulated in advanced head and neck SCCs (HNSCCs). Studies of HNSCC cell lines demonstrate that the MUC1-C subunit regulates expression of (i) RIG-I and MDA5 pattern recognition receptors, (ii) STAT1 and interferon (IFN) regulatory factors, and (iii) downstream IFN-stimulated genes (ISGs). MUC1-C integrates chronic activation of the STAT1 inflammatory pathway with induction of the ∆Np63 and SOX2 genes that are aberrantly expressed in HNSCCs. In extending those dependencies, we demonstrate that MUC1-C is necessary for NOTCH3 expression, self-renewal capacity and tumorigenicity. The findings that MUC1 associates with ∆Np63, SOX2 and NOTCH3 expression by scRNA-seq analysis further indicate that MUC1-C drives the HNSCC stem cell state and is a target for suppressing HNSCC progression.

2.
Cell Death Discov ; 10(1): 9, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182558

RESUMEN

The oncogenic MUC1-C transmembrane protein is a critical effector of the cancer stem cell (CSC) state. Addiction to MUC1-C for self-renewal in the progression of human cancers has emphasized the need for development of anti-MUC1-C agents. However, there are presently no approved small molecules for targeting MUC1-C-dependent CSCs. In screening for small molecules, we identified salinomycin (SAL), an inducer of ferroptosis, as a potent inhibitor of MUC1-C signaling. We demonstrate that SAL suppresses MUC1-C expression by disrupting a NF-κB/MUC1-C auto-inductive circuit that is necessary for ferroptosis resistance. Our results show that SAL-induced MUC1-C suppression downregulates a MUC1-C→MYC pathway that activates genes encoding (i) glutathione-disulfide reductase (GSR), and (ii) the LDL receptor related protein 8 (LRP8), which inhibit ferroptosis by generating GSH and regulating selenium levels, respectively. GSR and LRP8 contribute to the function of glutathione peroxidase 4 (GPX4), an essential negative regulator of ferroptotic cell death. We demonstrate that targeting MUC1-C genetically or with the GO-203 peptide inhibitor suppresses GPX4 expression and GPX activity in association with the induction of ferroptosis. Studies of CSCs enriched by serial passage as tumorspheres further demonstrate that the effects of SAL are mediated by downregulation of MUC1-C and thereby overcoming resistance to ferroptosis. As confirmation of these results, rescue of MUC1-C downregulation with the MUC1-C cytoplasmic domain (i) reversed the suppression of GSR, LRP8 and GPX4 expression, and (ii) attenuated the induction of ferroptosis. These findings identify SAL as a unique small molecule inhibitor of MUC1-C signaling and demonstrate that MUC1-C is an important effector of resistance to ferroptosis.

3.
Breast Cancer ; 31(1): 63-74, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37995024

RESUMEN

BACKGROUND: The internet, especially YouTube, has become a prominent source of health information. However, the quality and accuracy of medical content on YouTube vary, posing concerns about misinformation. This study focuses on providing reliable information about hereditary breast cancer on YouTube, given its importance for decision-making among patients and families. The study examines the quality and accessibility of such content in Japanese, where limited research has been conducted. METHODS: A nonprofit organization called BC Tube was established in May 2020 to create informative videos about breast cancer. The study analyzed 85 YouTube videos selected using the Japanese keywords "hereditary breast cancer" and "HBOC", categorized into six groups based on the source of upload: BC Tube, hospitals/governments, individual physicians, public-interest organizations/companies, breast cancer survivors, and others. The videos were evaluated based on various factors, including content length, view counts, likes, comments, and the presence of advertisements. The content was evaluated using the PEMAT and DISCERN quality criteria. RESULTS: BC Tube created high-quality videos with high scores on PEMAT understandability, significantly outperforming other sources. Videos from public-interest organizations/companies received the most views and likes, despite their lower quality. Videos from medical institutions and governments were of superior quality but attracted less attention. CONCLUSIONS: Our study emphasizes the importance of promoting accessible, easy-to-understand, and widely recognized medical information online. The popularity of videos does not always correspond to their quality, emphasizing the importance of quality evaluation. BC Tube provides a peer-reviewed platform to disseminate high-quality health information. We need to develop high-quality online health information and encourage the promotion of evidence-based information on YouTube.


Asunto(s)
Neoplasias de la Mama , Medios de Comunicación Sociales , Humanos , Femenino , Difusión de la Información , Neoplasias de la Mama/genética , Grabación en Video , Reproducibilidad de los Resultados
4.
J Thorac Oncol ; 19(3): 434-450, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37924972

RESUMEN

INTRODUCTION: Osimertinib is an irreversible EGFR tyrosine kinase inhibitor approved for the first-line treatment of patients with metastatic NSCLC harboring EGFR exon 19 deletions or L858R mutations. Patients treated with osimertinib invariably develop acquired resistance by mechanisms involving additional EGFR mutations, MET amplification, and other pathways. There is no known involvement of the oncogenic MUC1-C protein in acquired osimertinib resistance. METHODS: H1975/EGFR (L858R/T790M) and patient-derived NSCLC cells with acquired osimertinib resistance were investigated for MUC1-C dependence in studies of EGFR pathway activation, clonogenicity, and self-renewal capacity. RESULTS: We reveal that MUC1-C is up-regulated in H1975 osimertinib drug-tolerant persister cells and is necessary for activation of the EGFR pathway. H1975 cells selected for stable osimertinib resistance (H1975-OR) and MGH700-2D cells isolated from a patient with acquired osimertinib resistance are found to be dependent on MUC1-C for induction of (1) phospho (p)-EGFR, p-ERK, and p-AKT, (2) EMT, and (3) the resistant phenotype. We report that MUC1-C is also required for p-EGFR, p-ERK, and p-AKT activation and self-renewal capacity in acquired osimertinib-resistant (1) MET-amplified MGH170-1D #2 cells and (2) MGH121 Res#2/EGFR (T790M/C797S) cells. Importantly, targeting MUC1-C in these diverse models reverses osimertinib resistance. In support of these results, high MUC1 mRNA and MUC1-C protein expression is associated with a poor prognosis for patients with EGFR-mutant NSCLCs. CONCLUSIONS: Our findings reveal that MUC1-C is a common effector of osimertinib resistance and is a potential target for the treatment of osimertinib-resistant NSCLCs.


Asunto(s)
Acrilamidas , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Pirimidinas , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptores ErbB/metabolismo , Mutación , Proteínas Proto-Oncogénicas c-akt/genética , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Compuestos de Anilina/farmacología , Mucina-1/genética
5.
iScience ; 26(11): 108168, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37915591

RESUMEN

Activation of the MUC1-C protein promotes lineage plasticity, epigenetic reprogramming, and the cancer stem cell (CSC) state. The present studies performed on enriched populations of triple-negative breast cancer (TNBC) CSCs demonstrate that MUC1-C is essential for integrating activation of glycolytic pathway genes with self-renewal and tumorigenicity. MUC1-C further integrates the glycolytic pathway with suppression of mitochondrial DNA (mtDNA) genes encoding components of mitochondrial Complexes I-V. The repression of mtDNA genes is explained by MUC1-C-mediated (i) downregulation of the mitochondrial transcription factor A (TFAM) required for mtDNA transcription and (ii) induction of the mitochondrial transcription termination factor 3 (mTERF3). In support of pathogenesis that suppresses mitochondrial ROS production, targeting MUC1-C increases (i) mtDNA gene transcription, (ii) superoxide levels, and (iii) loss of self-renewal capacity. These findings and scRNA-seq analysis of CSC subpopulations indicate that MUC1-C regulates self-renewal and redox balance by integrating activation of glycolysis with suppression of oxidative phosphorylation.

6.
Commun Biol ; 6(1): 1030, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821650

RESUMEN

Chronic inflammation promotes epigenetic reprogramming in cancer progression by pathways that remain unclear. The oncogenic MUC1-C protein is activated by the inflammatory NF-κB pathway in cancer cells. There is no known involvement of MUC1-C in regulation of the COMPASS family of H3K4 methyltransferases. We find that MUC1-C regulates (i) bulk H3K4 methylation levels, and (ii) the COMPASS SET1A/SETD1A and WDR5 genes by an NF-κB-mediated mechanism. The importance of MUC1-C in regulating the SET1A COMPASS complex is supported by the demonstration that MUC1-C and WDR5 drive expression of FOS, ATF3 and other AP-1 family members. In a feedforward loop, MUC1-C, WDR5 and AP-1 contribute to activation of genes encoding TRAF1, RELB and other effectors in the chronic NF-κB inflammatory response. We also show that MUC1-C, NF-κB, WDR5 and AP-1 are necessary for expression of the (i) KLF4 master regulator of the pluripotency network and (ii) NOTCH1 effector of stemness. In this way, MUC1-C/NF-κB complexes recruit SET1A/WDR5 and AP-1 to enhancer-like signatures in the KLF4 and NOTCH1 genes with increases in H3K4me3 levels, chromatin accessibility and transcription. These findings indicate that MUC1-C regulates the SET1A COMPASS complex and the induction of genes that integrate NF-κB-mediated chronic inflammation with cancer progression.


Asunto(s)
FN-kappa B , Neoplasias , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Factor de Transcripción AP-1/metabolismo , Neoplasias/genética , Procesos Neoplásicos , Inflamación/genética , Epigénesis Genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mucina-1/genética , Mucina-1/metabolismo
7.
Cancer Lett ; 559: 216116, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36878307

RESUMEN

Colorectal cancers (CRCs) harboring the BRAF(V600E) mutation are associated with aggressive disease and resistance to BRAF inhibitors by feedback activation of the receptor tyrosine kinase (RTK)→RAS→MAPK pathway. The oncogenic MUC1-C protein promotes progression of colitis to CRC; whereas there is no known involvement of MUC1-C in BRAF(V600E) CRCs. The present work demonstrates that MUC1 expression is significantly upregulated in BRAF(V600E) vs wild-type CRCs. We show that BRAF(V600E) CRC cells are dependent on MUC1-C for proliferation and BRAF inhibitor (BRAFi) resistance. Mechanistically, MUC1-C integrates induction of MYC in driving cell cycle progression with activation of the SHP2 phosphotyrosine phosphatase, which enhances RTK-mediated RAS→ERK signaling. We demonstrate that targeting MUC1-C genetically and pharmacologically suppresses (i) activation of MYC, (ii) induction of the NOTCH1 stemness factor, and (iii) the capacity for self-renewal. We also show that MUC1-C associates with SHP2 and is required for SHP2 activation in driving BRAFi-induced feedback of ERK signaling. In this way, targeting MUC1-C in BRAFi-resistant BRAF(V600E) CRC tumors inhibits growth and sensitizes to BRAF inhibition. These findings demonstrate that MUC1-C is a target for the treatment of BRAF(V600E) CRCs and for reversing their resistance to BRAF inhibitors by suppressing the feedback MAPK pathway.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas B-raf , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Mucina-1/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal
8.
J Immunother Cancer ; 11(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36754452

RESUMEN

BACKGROUND: The MUC1-C protein evolved in mammals to protect barrier tissues from loss of homeostasis; however, MUC1-C promotes oncogenesis in association with chronic inflammation. Aberrant expression of MUC1-C in cancers has been linked to depletion and dysfunction of T cells in the tumor microenvironment. In contrast, there is no known involvement of MUC1-C in the regulation of natural killer (NK) cell function. METHODS: Targeting MUC1-C genetically and pharmacologically in cancer cells was performed to assess effects on intracellular and cell surface expression of the MHC class I chain-related polypeptide A (MICA) and MICB ligands. The MICA/B promoters were analyzed for H3K27 and DNA methylation. Shedding of MICA/B was determined by ELISA. MUC1-C interactions with ERp5 and RAB27A were assessed by coimmunoprecipitation and direct binding studies. Exosomes were isolated for analysis of secretion. Purified NK cells were assayed for killing of cancer cell targets. RESULTS: Our studies demonstrate that MUC1-C represses expression of the MICA and MICB ligands that activate the NK group 2D receptor. We show that the inflammatory MUC1-C→NF-κB pathway drives enhancer of zeste homolog 2-mediated and DNMT-mediated methylation of the MICA and MICB promoter regions. Targeting MUC1-C genetically and pharmacologically with the GO-203 inhibitor induced intracellular and cell surface MICA/B expression but not MICA/B cleavage. Mechanistically, MUC1-C regulates the ERp5 thiol oxidoreductase that is necessary for MICA/B protease digestion and shedding. In addition, MUC1-C interacts with the RAB27A protein, which is required for exosome formation and secretion. As a result, targeting MUC1-C markedly inhibited secretion of exosomes expressing MICA/B. In concert with these results, we show that targeting MUC1-C promotes NK cell-mediated killing. CONCLUSIONS: These findings uncover pleotropic mechanisms by which MUC1-C confers evasion of cancer cells to NK cell recognition and destruction.


Asunto(s)
Exosomas , Mucina-1 , Neoplasias , Humanos , Exosomas/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Células Asesinas Naturales , Ligandos , Mucina-1/genética , Mucina-1/metabolismo , Neoplasias/patología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Microambiente Tumoral
9.
Mol Cancer Res ; 21(3): 274-289, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36445328

RESUMEN

The polybromo-1 (PBRM1) chromatin-targeting subunit of the SWI/SNF PBAF chromatin remodeling complex drives DNA damage resistance and immune evasion in certain cancer cells through mechanisms that remain unclear. STAT1 and IRF1 are essential effectors of type I and II IFN pathways. Here, we report that MUC1-C is necessary for PBRM1 expression and that it forms a nuclear complex with PBRM1 in triple-negative breast cancer (TNBC) cells. Analysis of global transcriptional (RNA-seq) and chromatin accessibility (ATAC-seq) profiles further demonstrated that MUC1-C and PBRM1 drive STAT1 and IRF1 expression by increasing chromatin accessibility of promoter-like signatures (PLS) on their respective genes. We also found that MUC1-C, PBRM1, and IRF1 increase the expression and chromatin accessibility on PLSs of the (i) type II IFN pathway IDO1 and WARS genes and (ii) type I IFN pathway RIG-I, MDA5, and ISG15 genes that collectively contribute to DNA damage resistance and immune evasion. In support of these results, targeting MUC1-C in wild-type BRCA TNBC cells enhanced carboplatin-induced DNA damage and the loss of self-renewal capacity. In addition, MUC1-C was necessary for DNA damage resistance, self-renewal, and tumorigenicity in olaparib-resistant BRCA1-mutant TNBC cells. Analysis of TNBC tumors corroborated that (i) MUC1 and PBRM1 are associated with decreased responsiveness to chemotherapy and (ii) MUC1-C expression is associated with the depletion of tumor-infiltrating lymphocytes (TIL). These findings demonstrate that MUC1-C activates PBRM1, and thereby chromatin remodeling of IFN-stimulated genes that promote chronic inflammation, DNA damage resistance, and immune evasion. IMPLICATIONS: MUC1-C is necessary for PBRM1-driven chromatin remodeling in chronic activation of IFN pathway genes that promote DNA damage resistance and immunosuppression.


Asunto(s)
Mucina-1 , Factores de Transcripción , Neoplasias de la Mama Triple Negativas , Humanos , Cromatina , Daño del ADN , Proteínas de Unión al ADN/genética , Terapia de Inmunosupresión , Interferones/genética , Mucina-1/genética , Mucina-1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
10.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897789

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive malignancy with limited treatment options. TNBC progression is associated with expansion of cancer stem cells (CSCs). Few insights are available regarding druggable targets that drive the TNBC CSC state. This review summarizes the literature on TNBC CSCs and the compelling evidence that they are addicted to the MUC1-C transmembrane protein. In normal epithelia, MUC1-C is activated by loss of homeostasis and induces reversible wound-healing responses of inflammation and repair. However, in settings of chronic inflammation, MUC1-C promotes carcinogenesis. MUC1-C induces EMT, epigenetic reprogramming and chromatin remodeling in TNBC CSCs, which are dependent on MUC1-C for self-renewal and tumorigenicity. MUC1-C-induced lineage plasticity in TNBC CSCs confers DNA damage resistance and immune evasion by chronic activation of inflammatory pathways and global changes in chromatin architecture. Of therapeutic significance, an antibody generated against the MUC1-C extracellular domain has been advanced in a clinical trial of anti-MUC1-C CAR T cells and in IND-enabling studies for development as an antibody-drug conjugate (ADC). Agents targeting the MUC1-C cytoplasmic domain have also entered the clinic and are undergoing further development as candidates for advancing TNBC treatment. Eliminating TNBC CSCs will be necessary for curing this recalcitrant cancer and MUC1-C represents a promising druggable target for achieving that goal.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Carcinogénesis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Inflamación/patología , Mucina-1/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
11.
Cancers (Basel) ; 14(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35681561

RESUMEN

The MUC1-C apical transmembrane protein is activated in the acute response of epithelial cells to inflammation. However, chronic MUC1-C activation promotes cancer progression, emphasizing the importance of MUC1-C as a target for treatment. We report here that MUC1-C is necessary for intrinsic expression of the RIG-I, MDA5 and cGAS cytosolic nucleotide pattern recognition receptors (PRRs) and the cGAS-stimulator of IFN genes (STING) in triple-negative breast cancer (TNBC) cells. Consistent with inducing the PRR/STING axis, MUC1-C drives chronic IFN-ß production and activation of the type I interferon (IFN) pathway. MUC1-C thereby induces the IFN-related DNA damage resistance gene signature (IRDS), which includes ISG15, in linking chronic inflammation with DNA damage resistance. Targeting MUC1-C in TNBC cells treated with carboplatin or the PARP inhibitor olaparib further demonstrated that MUC1-C is necessary for expression of PRRs, STING and ISG15 and for intrinsic DNA damage resistance. Of translational relevance, MUC1 significantly associates with upregulation of STING and ISG15 in TNBC tumors and is a target for treatment with CAR T cells, antibody-drug conjugates (ADCs) and direct inhibitors that are under preclinical and clinical development.

12.
Oncogene ; 41(27): 3511-3523, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35688945

RESUMEN

Merkel cell carcinoma (MCC) is an aggressive malignancy with neuroendocrine (NE) features, limited treatment options, and a lack of druggable targets. There is no reported involvement of the MUC1-C oncogenic protein in MCC progression. We show here that MUC1-C is broadly expressed in MCCs and at higher levels in Merkel cell polyomavirus (MCPyV)-positive (MCCP) relative to MCPyV-negative (MCCN) tumors. Our results further demonstrate that MUC1-C is expressed in MCCP, as well as MCCN, cell lines and regulates common sets of signaling pathways related to RNA synthesis, processing, and transport in both subtypes. Mechanistically, MUC1-C (i) interacts with MYCL, which drives MCC progression, (ii) is necessary for expression of the OCT4, SOX2, KLF4, MYC, and NANOG pluripotency factors, and (iii) induces the NEUROD1, BRN2 and ATOH1 NE lineage dictating transcription factors. We show that MUC1-C is also necessary for MCCP and MCCN cell survival by suppressing DNA replication stress, the p53 pathway, and apoptosis. In concert with these results, targeting MUC1-C genetically and pharmacologically inhibits MCC self-renewal capacity and tumorigenicity. These findings demonstrate that MCCP and MCCN cells are addicted to MUC1-C and identify MUC1-C as a potential target for MCC treatment.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Mucina-1 , Neoplasias Cutáneas , Carcinoma de Células de Merkel/tratamiento farmacológico , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/virología , Humanos , Mucina-1/metabolismo , Transducción de Señal , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/virología
13.
Mol Cancer Res ; 20(9): 1379-1390, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35612556

RESUMEN

Small cell lung cancer (SCLC) is a recalcitrant malignancy defined by subtypes on the basis of differential expression of the ASCL1, NEUROD1, and POU2F3 transcription factors. The MUC1-C protein is activated in pulmonary epithelial cells by exposure to environmental carcinogens and promotes oncogenesis; however, there is no known association between MUC1-C and SCLC. We report that MUC1-C is expressed in classic neuroendocrine (NE) SCLC-A, variant NE SCLC-N and non-NE SCLC-P cells and activates the MYC pathway in these subtypes. In SCLC cells characterized by NE differentiation and DNA replication stress, we show that MUC1-C activates the MYC pathway in association with induction of E2F target genes and dysregulation of mitotic progression. Our studies further demonstrate that the MUC1-C→MYC pathway is necessary for induction of (i) NOTCH2, a marker of pulmonary NE stem cells that are the proposed cell of SCLC origin, and (ii) ASCL1 and NEUROD1. We also show that the MUC1-C→MYC→NOTCH2 network is necessary for self-renewal capacity and tumorigenicity of NE and non-NE SCLC cells. Analyses of datasets from SCLC tumors confirmed that MUC1 expression in single SCLC cells significantly associates with activation of the MYC pathway. These findings demonstrate that SCLC cells are addicted to MUC1-C and identify a potential new target for SCLC treatment. IMPLICATIONS: This work uncovers addiction of SCLC cells to MUC1-C, which is a druggable target that could provide new opportunities for advancing SCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Células Neuroendocrinas , Carcinoma Pulmonar de Células Pequeñas , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Mucina-1/genética , Mucina-1/metabolismo , Células Neuroendocrinas/patología , Proteínas Oncogénicas/genética , Carcinoma Pulmonar de Células Pequeñas/genética
14.
Oncoimmunology ; 11(1): 2029298, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35127252

RESUMEN

The oncogenic MUC1-C protein drives dedifferentiation of castrate resistant prostate cancer (CRPC) cells in association with chromatin remodeling. The present work demonstrates that MUC1-C is necessary for expression of IFNGR1 and activation of the type II interferon-gamma (IFN-γ) pathway. We show that MUC1-C→ARID1A/BAF signaling induces IFNGR1 transcription and that MUC1-C-induced activation of the NuRD complex suppresses FBXW7 in stabilizing the IFNGR1 protein. MUC1-C and NuRD were also necessary for expression of the downstream STAT1 and IRF1 transcription factors. We further demonstrate that MUC1-C and PBRM1/PBAF are necessary for IRF1-induced expression of (i) IDO1, WARS and PTGES, which metabolically suppress the immune tumor microenvironment (TME), and (ii) the ISG15 and SERPINB9 inhibitors of T cell function. Of translational relevance, we show that MUC1 associates with expression of IFNGR1, STAT1 and IRF1, as well as the downstream IDO1, WARS, PTGES, ISG15 and SERPINB9 immunosuppressive effectors in CRPC tumors. Analyses of scRNA-seq data further demonstrate that MUC1 correlates with cancer stem cell (CSC) and IFN gene signatures across CRPC cells. Consistent with these results, MUC1 associates with immune cell-depleted "cold" CRPC TMEs. These findings demonstrate that MUC1-C integrates chronic activation of the type II IFN-γ pathway and induction of chromatin remodeling complexes in linking the CSC state with immune evasion.


Asunto(s)
Ensamble y Desensamble de Cromatina , Interferón gamma , Mucina-1 , Neoplasias de la Próstata Resistentes a la Castración , Ensamble y Desensamble de Cromatina/inmunología , Humanos , Terapia de Inmunosupresión , Masculino , Mucina-1/inmunología , Neoplasias de la Próstata Resistentes a la Castración/inmunología , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores de Interferón/inmunología , Transducción de Señal/inmunología , Microambiente Tumoral , Receptor de Interferón gamma
15.
Mol Cancer Res ; 20(4): 556-567, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35022313

RESUMEN

The oncogenic MUC1-C protein promotes dedifferentiation of castrate-resistant prostate cancer (CRPC) and triple-negative breast cancer (TNBC) cells. Chromatin remodeling is critical for the cancer stem cell (CSC) state; however, there is no definitive evidence that MUC1-C regulates chromatin accessibility and thereby expression of stemness-associated genes. We demonstrate that MUC1-C drives global changes in chromatin architecture in the dedifferentiation of CRPC and TNBC cells. Our results show that MUC1-C induces differentially accessible regions (DAR) across their genomes, which are significantly associated with differentially expressed genes (DEG). Motif and cistrome analysis further demonstrated MUC1-C-induced DARs align with genes regulated by the JUN/AP-1 family of transcription factors. MUC1-C activates the BAF chromatin remodeling complex, which is recruited by JUN in enhancer selection. In studies of the NOTCH1 gene, which is required for CRPC and TNBC cell self-renewal, we demonstrate that MUC1-C is necessary for (i) occupancy of JUN and ARID1A/BAF, (ii) increases in H3K27ac and H3K4me3 signals, and (iii) opening of chromatin accessibility on a proximal enhancer-like signature. Studies of the EGR1 and LY6E stemness-associated genes further demonstrate that MUC1-C-induced JUN/ARID1A complexes regulate chromatin accessibility on proximal and distal enhancer-like signatures. These findings uncover a role for MUC1-C in chromatin remodeling that is mediated at least in part by JUN/AP-1 and ARID1A/BAF in association with driving the CSC state. IMPLICATIONS: These findings show that MUC1-C, which is necessary for the CRPC and TNBC CSC state, activates a novel pathway involving JUN/AP-1 and ARID1A/BAF that regulates chromatin accessibility of stemness-associated gene enhancers.


Asunto(s)
Ensamble y Desensamble de Cromatina , Regulación Neoplásica de la Expresión Génica , Carcinogénesis/genética , Cromatina/genética , Cromatina/metabolismo , Humanos , Masculino , Mucina-1/metabolismo , Células Madre Neoplásicas/metabolismo , Oncogenes
16.
Carcinogenesis ; 43(1): 67-76, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-34657147

RESUMEN

Pancreatic ductal adenocarcinomas (PDAC) and poorly differentiated pancreatic neuroendocrine (NE) carcinomas are KRAS mutant malignancies with a potential common cell of origin. PDAC ductal, but not NE, lineage traits have been associated with cell-intrinsic activation of interferon (IFN) pathways. The present studies demonstrate that the MUC1 C-terminal subunit (MUC1-C), which evolved to protect mammalian epithelia from loss of homeostasis, is aberrantly overexpressed in KRAS mutant PDAC tumors and cell lines. We show that MUC1-C is necessary for activation of the type I and II IFN pathways and for expression of the Yamanaka OCT4, SOX2, KLF4 and MYC (OSKM) pluripotency factors. Our results demonstrate that MUC1-C integrates IFN signaling and pluripotency with NE dedifferentiation by forming a complex with MYC and driving the (i) achaete-scute homolog 1 and BRN2/POU3F2 neural, and (ii) NOTCH1/2 stemness transcription factors. Of translational relevance, targeting MUC1-C genetically and pharmacologically in PDAC cells (i) suppresses OSKM, NE dedifferentiation and NOTCH1/2, and (ii) inhibits self-renewal capacity and tumorigenicity. In PDAC tumors, we show that MUC1 significantly associates with activation of IFN signaling, MYC and NOTCH, and that upregulation of the MUC1-C → MYC pathway confers a poor prognosis. These findings indicate that MUC1-C dictates PDAC NE lineage specification and is a potential target for the treatment of recalcitrant pancreatic carcinomas with NE dedifferentiation.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Mucina-1/genética , Células Neuroendocrinas/patología , Neoplasias Pancreáticas/genética , Adenocarcinoma/patología , Animales , Carcinogénesis/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ratones Desnudos , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/patología , Transducción de Señal/genética , Neoplasias Pancreáticas
17.
Anticancer Res ; 41(8): 4143-4149, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34281885

RESUMEN

BACKGROUND/AIM: With advances in anti-HER2 treatment and improved prognoses of HER2-positive breast cancer, the American Society of Clinical Oncology and the American Society of Pathologists (ASCO/CAP) have revised the HER2 diagnostic guidelines several times. We examined how to respond clinically to the revisions of the interpretation of the immunohistochemistry (IHC) method. PATIENTS AND METHODS: We re-evaluated 254 patients diagnosed as HER2 IHC equivocal, who underwent fluorescence in situ hybridization (FISH) before and after the IHC diagnostic criteria update in 2013. RESULTS: Twenty of 131 (15.3%) IHC equivocal cases by the ASCO/CAP 2007 guideline were IHC score 3+ and one of 20 (0.76%) was negative for FISH. Five of 123 (4.1%) IHC equivocal cases by the ASCO/CAP 2013 guideline were negative for IHC as per the 2007 guideline and four were positive for FISH. CONCLUSION: After revision of the ASCO/CAP 2013 guideline, 3.3% of HER2-negative cases before the revision should have received anti-HER2 treatment.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Receptor ErbB-2/metabolismo , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/cirugía , Femenino , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Guías de Práctica Clínica como Asunto , Receptor ErbB-2/antagonistas & inhibidores
18.
Oncogene ; 40(30): 4930-4940, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34163028

RESUMEN

The polybromo-associated PBAF (SWI/SNF) chromatin remodeling complex, which includes PBRM1, ARID2, and BRD7, regulates cell differentiation and genomic integrity. MUC1-C is an oncogenic protein that drives lineage plasticity in prostate cancer (PC) progression. The present work demonstrates that MUC1-C induces PBRM1, ARID2, and BRD7 expression by the previously unrecognized E2F1-mediated activation of their respective promoters. The functional significance of the MUC1-C→PBAF pathway is supported by demonstrating involvement of MUC1-C in associating with nuclear PBAF and driving the NRF2 antioxidant gene transcriptome in PC cells. Mechanistically, MUC1-C forms a complex with NRF2 and PBRM1 on the NRF2 target SLC7A11 gene that encodes the xCT cystine-glutamate antiporter, increases chromatin accessibility and induces SLC7A11/xCT expression. We also show that MUC1-C and PBRM1 are necessary for induction of other NRF2 target genes, including G6PD and PGD that regulate the pentose phosphate pathway. Our results further demonstrate that MUC1-C integrates activation of PBRM1 with the regulation of antioxidant genes, ROS levels, pluripotency factor expression and the cancer stem cell (CSC) state. These findings reveal a role for MUC1-C in regulating PBAF, redox balance and lineage plasticity of PC CSC progression. Our findings also uncover involvement of MUC1-C in integrating the PBAF and BAF pathways in cancer.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Mucina-1/metabolismo , Células Madre Neoplásicas/metabolismo , Oxidación-Reducción , Neoplasias de la Próstata/etiología , Neoplasias de la Próstata/metabolismo , Factores de Transcripción/metabolismo , Biomarcadores , Biomarcadores de Tumor , Línea Celular , Susceptibilidad a Enfermedades , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Masculino , Modelos Biológicos , Estrés Oxidativo , Regiones Promotoras Genéticas , Neoplasias de la Próstata/patología , Unión Proteica , Transducción de Señal
20.
J Immunother Cancer ; 9(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33495298

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) have had a profound impact on the treatment of many tumors; however, their effectiveness against triple-negative breast cancers (TNBCs) has been limited. One factor limiting responsiveness of TNBCs to ICIs is a lack of functional tumor-infiltrating lymphocytes (TILs) in 'non-inflamed' or 'cold' tumor immune microenvironments (TIMEs), although by unknown mechanisms. Targeting MUC1-C in a mouse transgenic TNBC tumor model increases cytotoxic tumor-infiltrating CD8+ T cells (CTLs), supporting a role for MUC1-C in immune evasion. The basis for these findings and whether they extend to human TNBCs are not known. METHODS: Human TNBC cells silenced for MUC1-C using short hairpin RNAs (shRNAs) were analyzed for the effects of MUC1-C on global transcriptional profiles. Differential expression and rank order analysis was used for gene set enrichment analysis (GSEA). Gene expression was confirmed by quantitative reverse-transcription PCR and immunoblotting. The The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) datasets were analyzed for effects of MUC1 on GSEA, cell-type enrichment, and tumor immune dysfunction and exclusion. Single-cell scRNA-seq datasets of TNBC samples were analyzed for normalized expression associations between MUC1 and selected genes within tumor cells. RESULTS: Our results demonstrate that MUC1-C is a master regulator of the TNBC transcriptome and that MUC1-C-induced gene expression is driven by STAT1 and IRF1. We found that MUC1-C activates the inflammatory interferon (IFN)-γ-driven JAK1→STAT1→IRF1 pathway and induces the IDO1 and COX2/PTGS2 effectors, which play key roles in immunosuppression. Involvement of MUC1-C in activating the immunosuppressive IFN-γ pathway was extended by analysis of human bulk and scRNA-seq datasets. We further demonstrate that MUC1 associates with the depletion and dysfunction of CD8+ T cells in the TNBC TIME. CONCLUSIONS: These findings demonstrate that MUC1-C integrates activation of the immunosuppressive IFN-γ pathway with depletion of TILs in the TNBC TIME and provide support for MUC1-C as a potential target for improving TNBC treatment alone and in combination with ICIs. Of translational significance, MUC1-C is a druggable target with chimeric antigen receptor (CAR) T cells, antibody-drug conjugates (ADCs) and a functional inhibitor that are under clinical development.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Interferón gamma/genética , Mucina-1/genética , Neoplasias de la Mama Triple Negativas/genética , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Factor 1 Regulador del Interferón/metabolismo , Interferón gamma/metabolismo , Mucina-1/metabolismo , Factor de Transcripción STAT1/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Análisis de la Célula Individual , Neoplasias de la Mama Triple Negativas/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...